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Fuilq debeloped turbulent channel flow 1s studled numencally using large eddy stmulatlon 

(LES) wth a Fourier fimte difference method. A prommect feature of this paper lies m the use 

of a conservative form of the Arakawa type for the convective terms m ;he Navier4tokes 

equations. The results are compared wth earher ones of Mom and Kim [I ] based on the 

rotational form of the convective terms. NotIceable differences are found m quantlttes such as 

Turbulence mtenslties, two point correlations, etc. The dlfference 1s most promment m the grid 

scale portion of the turbulent shear stress. The present results agree well \%ith the recent direct 

simulation of a mildly curved channel flow b! Moser and Iclo~n [2] using the 

Founer+Zhebyshev polynomial expansions. An estimate IS made of the error Inherent m the 

rotational form combmed wth the second-order central fimte difference method The 

relationshlp bet\\een the energy productlon mechamsm and heircIty 1s pomted out. 1 ;$A- 
AidmlK Pres. I”< 

1. INTRODUCTION 

Within the last ten years, numerical simulation has become a powerful tool in 

turbulence research. For full simulation of three dimensional turbulence, honex+er, 

the number of grid points required is proportional to Re” ‘, where Re is he 
Reynolds number. This is greater than the capacity of any existing or envisaged 
supercomputer. Alternatively, the turbulent eddies may be spht into two groups, 
namely, the large scale (grid scale or GS) eddies and the small scale (subgrid scale 

or SGS) ones. The former are energetic and dependent on the type of flow On the 
other hand, the latter are dissipative and more universal. Therefore, proper SGS 
models, as well as accurate, efficient, and stable numerical methods for the GS 
variables, are indispensable for a reliable simulation of high Reynolds number 
turbulence. 

One promising way to fulfill the above requirements is the spectral method com- 
bined with large eddy simulation (LES). Fourier expansion is regularly used in the 
simulation of turbulent channel flow. In this type of flow. the cyclic boundary con- 
ditions are compatible with the Navier-Stokes equations in the downstream and 
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spanwise directions. In the inhomogeneous direction, finite differences [l, 3, 41 or 
Chebyshev polynomial expansions [2, 5-71 are used. The Fourier finite difference 
method is combined with LES in [l and 41. On the other hand, the 
Fourier-Chebyshev polynomial expansion is used in [2, 5-71 without any 
modeling. In [S-7], attention is focused on the initial stage of transition to tur- 
bulence, whereas in [2] fully developed turbulent flows in a mildly curved channel 
at relatively low Reynolds numbers are simulated. 

It is well known that the integral constraints such as the conservation of mean 
energy are quite important in making computation stable in long-term numerical 
integrations [S]. Therefore, the conservative form of the Arakawa type [9] or the 
rotational form [lo] is widely used for the convective terms in the Navier-Stokes 
equations. In the present paper, we refer to the former as the Arakawa form. The 
rotational form is useful because it preserves mean vorticity, helicity. enstrophy, etc. 
in addition to mean momentum and energy in the absence of external forces and 
viscous dissipation. The Arakawa form, however, generally preserves only mean 
momentum and energy. The rotational form has been successful when combined 
with Chebyshev polynomial expansions as in [2]. 

In the present study, a fully developed turbulent channel flow is studied using 
LES with the Fourier finite difference method. The numerical scheme is basically 
the same as in [ 1 ] and essentially a spectral version of a previous computation 
[ 1 l] in which all partial differential operators were approximated by the finite dif- 
ference method. The essential points are the choice of the form of the convective 
terms in the Navier-Stokes equations and the residual stress model [12, 11. In [1], 
the rotational form was used. In the present study the Arakawa form is used and 
the residual stress model is not employed. Comparisons with [l] and the 
Fourier-Chebyshev computation in [2] are made. Noteworthy differences are 
found. especially in the balance of the GS portion of turbulent shear stress. It is 
shown that large truncation errors can occur in the vicinity of the walls when the 
rotational form is used and the normal derivatives are approximated with the 
second-order central finite difference method. 

2. GOVERNING EQUATIONS 

We consider an incompressible channel flow whose time evolution is governed by 
the Navier-Stokes and continuity equations for the velocity components U, 
(i= 1, 2, 3) and the pressure p: 

s i, (JP 
~+r;(uru,)= --+&V2rt,+26,,, 

-I 
ax, 

dll .-L= 
7 0. 
LX, 

(2) 

Here i, j= 1, 2, 3 correspond to X, J, z, respectively, where x is the downstream 
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coordinate, ,V is the spanwise coordinate, 2 is the normal coordinate, and 6,, is the 
Kronecker delta symbol. Occasionally, U, (i = 1, 2, 3) are denoted by 11, U, II’, respec- 
tively. The flow is driven by the mean pressure gradient. All variables have beep 
made dimensionless by means of the channel width H and the friction ve!ocity H* 
[ = (t/pa)’ >; T is the wall stress and p0 the density which is assumed constant.]. Re 
is the Reynolds number defined by zl*H/v (V is the kinematic viscosity) and i?, 
represents the Reynolds number defined in terms of the center-plane velocity CT: 
and H. Moreover, the horizontal average of a quantity is denoted by angular 
brackets (. ), the deviation from the horizontal average by (. )“. and the length in 
wall units by (. ) + . The summation convention is used for repeated subscripts 

IfSis a function containing all the scales, we define the GS component of ? by the 
convolution of f with a filter function G,( x,. xi) [ 13 ]: 

In the present study. the Gaussian filter is used as G, (i= 1. 2) in homogeneox 
directions and the top-hat filter is used as G, in the z direction. These filters arc 
selected in the same manner as in [ 11. Along with this filtering procedure. rhe 
velocity field U, and the pressure p are decomposed intco GS and SGS components 
as 

11, = u, + z(, p=P+p’. k-4) 

Applying the filtering to Eqs. ( 1) and (2). we get the following filtered momentum 
and continuity equations: 

Nonlinear terms in Eq. (5 j are expressed as follows. 

-y-y-q----- - -- 
II, ZI, = z4,14, + u; II, + l4, u, + u: l4;. ‘:7i 

In this study. the correlations between GS and SGS variables, namely, the second 
and third terms of (7) are neglected, and the terms with double bars m the .T and j* 
directions are explicitly calculated. The Leonard term arising in the : direction [ ! 3 ] 
is represented by the truncation error of the second-order central finite difference 
scheme [ 11. 

----i To proceed further, the SGS Reynolds stress 14iZ1, must be modeled in terms of 
the filtered variables. We use an eddy viscosity model: 

I 
U,‘Zl, -‘6,,11;= -iI, ($+zI), 

3 
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where v, is the SGS eddy viscosity. In the present study, the Smagorinsky 
model [ 141 is used for v,: 

I,2 ve = (cd j2 1 I I -eve,, , dzi, hi, 
2 

e,,=-+- 
ax, i?x, 

In these expressions, A is the representative grid interval which we take to be 
d = (Ax AJ, AZ)“’ and Ax, dy, A-: denote the computational mesh size in the x, ~1, I 
directions, respectively. This model may be derived by a statistical 
approach [ 15, 161, and c has been chosen equal to 0.1 by computer optimization as 
in [ 171. In order to make (9) compatible with the no-slip boundary condition, A is 
multiplied by the damping function of Van Driest type 1 - exp( -,-+/A +) with 
A, =25 [lS]. 

In [12 and 11, the eddy viscosity representation (8) is split into two parts, i.e., 
homogeneous and inhomogeneous parts as 

I I u,u, - 4 6,u;u, = -v,(e!,- (e,,)) - ve*(ev), 

The latter is called the residual stress model. In (IO), r, is given by (9) with e, 
replaced by e,, - (e,,). The inhomogeneous eddy viscosity v,* is 

v:=c*(Ddy)’ [+(e,,)(e,,>]“, (11) 

where c* was chosen to be 0.065 and D is another damping function [ 11. 
In the present study, the residual stress model is not used for the following 

reasons; Without the model, the turbulence is sustained. In addition, it is not 
reasonable that the mean velocity gradient directly comes into the evaluation of the 
local SGS Reynolds stress. The residual stress model in [l] will be discussed in 
detail in Section 5. 

For later convenience, we give the energy budget for the GS portion of turbulent 
energy (ti:’ 2(:‘)/2 (i= 1, 2, 3, no summation rule): 

Similarly, the governing equation for the GS portion of turbulent shear stress is 
expressed as 
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The terms on the right-hand sides of (12) and ( 13) are called the GS productron. 
convection, dissipation, velocity-pressure gradient, diffusion and cascade terms. 
respectively. 

3. NU~~ERICAL METHOD 

3.1. ?Jwweriral Appmvifnntions 

Equation (5) can be recast into the form 

where the horizontally averaged part of the turbulent viscous terms and its 
deviation have been separated. The spatial derivatives in the .Y and 1’ directions are 
treated by the Fourier spectral method. NX, NY denotle the numbers of grid points 
in the .Y, ,I’ directions, respectively. The I coordinate is stretched using 

zli = f( tanh( cO </, jxt -t 1) (X- = 0. NZ - I). (15) 

where zk is the coordinate of the kth grid point in the 2 direction. cc, = log(( 1 + :f ). 
(l-%)),2, <A= - 1 + 2k 3{ and d< = l/(iUZ- I j. The stretching parameter Y is 
0.98346 as in [ 11. For discretizing (14) in time. the terms on the right-hand side 
are approximated by the Crank-Nicolson schemle while the second-order 
Adams-Bashforth scheme is used for the remaining terms. As stated in Section I, an 
essential point of the present study is the choice of approximation for the convective 
terms in the Navier-Stokes equations. For the Arakawa form of the equations. a 
regular mesh system is adopted, and all velocity components and pressure are 
defined at grid points z~,-, as given by (15), and both the momentum and continuity 
equations are enforced at grid points. This grid system leads to temporai and 
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spatial oscillation of p and led Moin and Kim [l] to adopt a staggered grid system. 
Their mesh system is staggered only in the z direction; the velocity is defined at zk 
and the pressure is at (zk+ zk+ ,)/I. The momentum and continuity equations are 
enforced on different control volumes. In the present study, the Adams-Bashforth 
method is applied to the pressure gradient terms to avoid oscillations in p. Thus, we 
get linear coupled equations for ti;+’ and p” as 

where superscript y1 denotes the time step and d, contains the remaining terms. To 
avoid iteration, ( ve) is evaluated at the 11th time step. Consequenlty, Eqs. (16) 
and (17) are solved as a system of coupled equations as in [ 1 and lo]. Partial dif- 
ferential operators in the 2 direction are approximated with second-order central 
finite differences as 

where h, = zx- - zk _, and p, 4, k are indices of grid positions in the X, J, z directions, 
respectively. 

A system of linear coupled difference equations for each pair of wavenumbers 
(/CL, k’,) is obtained by inserting the Fourier expansion into Eqs. (16) and (17) 

(Type 1); 

Lk9k~1f”kgk+Ukqk,,=gk (k= 1, NZ-2), (19) 

where Lk:., filk, and U, are 4x4 matrices, qk= (cik, t?,, iGk,j?li)r ((.)’ denotes the 
transpose.) and the right-hand side of (16) and (17) is denoted by g, and k:, kj 
denote wavenumbers in the .Y and )’ directions, respectively. i2, ,n,k denotes the 
Fourier transformation of U,, ,, h- and subscripts 1, m are omitted here. The coupled 
system of Eqs. (19) is solved by the conventional method for block tri-diagonal 
equations. 

Here we introduce Type II to elaborate the numerical algorithm. Equations (19) 
can be rearranged into the form (Type II) 
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‘-lU ‘l+l+3B,p”= -(A+E)u’i+B&iP’+f,, (20;) 

AV ‘I + ’ + 3B> p” = - (A + E) Y” + B,. pii ~ ’ + fz, r”Ob 1 

AW “+‘+3c2 p”= -(.1+E)w”+C, g+ +f,. (7Oc) 

B,u”+‘+BB, v”f’+C1 w”+k=O. (ZOd) 

where A, B,, B,.,C1,Cz are NZ-2xNZ-2 matrices, u=(fi15iiz, . . . . Li,vz--z)L, and 
f, = a, I > 21, f ‘..., a,, rvz- 2 )’ etc. Here, A representsthe operator{ - I$(/;,~’ + k[’ ) > 
- 2,/4r + 11: ii-/&‘), B, = - .&- 1 k:I, B, = - V! - 1 k:.I, C, and Cz represent 

-3/i%, E = 41/4t, I is a unit matrix, \, ‘z is the imaginary unit, and ~1; denoles 
(v~)” + l/Re. These difference equations are closed as follows: the velocity com- 
ponents are set to zero on the walls, and a numerical boundary condition for the 
pressure on the walls is imposed. This boundary condition is given so as to F&ii1 
the continuity of normal momentum across the wall, by using the 2 component 
of ( 16 ) on the wail. Namely, 

where 11’ _ , and p-, denote the values of II’ and p at external fictitious grid point 

L ~~ 1, respectively. 1~‘~ is set to zero from a no-slip condition at the wall. and II‘-, 1s 
set equal to W, from the difference form of the continuity equation. Equation i31). 
however, is not sufficient to close Eq. (20~) and an extra boundary condition for 
pressure is imposed: p-, is extrapolated with second-order polynomial using the 
values of p,-,. p,, pz to retain the second-order accuracy. Similar conditions are 
imposed at the upper wall. These boundary conditions are incorporated into C,. 

Here, let us show the reason why the Adams-Bashforth method is applied to the 
pressure gradient terms. In Type II, the Poisson-like equation for the pressz-e can 
be derived as 

Note that Eq. (22) is obtained through Gauss elimination of u’!+ ‘_ v” + I5 w”+ ’ 
from (20), which has already been closed by imposing boundary condrzions. 
Therefore, no additional boundary condition is required. (22) can be written in the 
form that 
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By solving Eq. (22), p” is obtained, and we get un + ‘, v” + ‘, and w” + ’ by inserting p” 
to Eqs. (20a), (20b), and (20~). 

Equation (22) becomes 

P f! + 1 = _ p” + S” 

for the Crank-Nicolson method and 

(24a) 

p” = + p” I+ S” 
Wb) 

for the AdamssBashforth method, where S” denotes the source term. The solution 
of difference equations (24a and 24b) are given as (25a and 25b), respectively: 

II- I 

p”=(-1)” po+ 1 (-l)‘zPJ-lY, 
/=O 

(25a) 

(25b) 

Therefore, oscillatory solutions in time can occur in the Crank-Nicolson method. 
To confirm this point, the decay of fluctuations was computed at low Reynolds 
numbers (Re - 10): velocity fluctuations decayed, whereas pressure exhibited both 
timewise and meshwise oscillations. Therefore the instantaneous pressure dis- 
tribution is not reliable by the Crank-Nicolson method unless we average ~7” and 

P -fl + ‘. On the other hand, this problem is resolved by the Adams-Bashforth method. 
In the conventional scheme of MAC type [19], if the viscous terms are treated 

implicitly, Eqs. (20a). (20b), and (20~) are multiplied by B,, B,, C,, respectively. 
Assuming that A and C, commute and using (20d), the Poisson equation for the 
pressure p becomes: 

( -k;‘Z- k;‘Z+ C, C2) p = RHS, (25) 

where C, C, approximates 2’/&‘. For the nonuniform grids, because il and C, do 
not commute, the discrete operators in the Poisson equation (25) are not consistent 
with the discrete operators applied to the Navier-Stokes and continuity equations. 
In the present method, however, they are constructed consistently. This is one of 
the advantages of the present method. 

For k: = ‘cl. = 0, w is set to zero from Eq. (ZOd), u and v are determined from 
Eqs. (20a) and (20b), respectively, and p is given by setting a0 = 0 and then solving 
(20~) succesively in the z direction. 

Types I and II differ in efficiency, although they are equivalent mathematically. In 
Type I, if Eqs. (19) are ordered as ti momentum, tl momentum, iv momentum, and 
continuity, the diagonal block has a zero diagonal element, which may seriously 
degrade the computation. This problem is removed by ordering the equations: con- 
tinuity, 0 momentum, 17 momentum, and G momentum, but dominance of diagonal 
elements is not guaranteed. This problem is absent in Type II [ 111. However, the 
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coefficient matrix D of (22) is full. Thus direct solution of (22) by Gauss elimmation 
would require 0( (hiZ - 2)3) arithmetic operations at each time step. All the results 
shown in the present paper are obtained with Type 1. 

3.2. Estimate of’ Truncation Errors Inrolced in the Amkalra and Rotatiorwl FOW?S 

In this study, two forms of the convective terms in the Navier-Stokes equations 
are used. One is the Arakawa form, and the other is the rotational form. Ic L 1 I;, 
the Arakawa form 

was employed following [ 171 (6/&u, denotes a second-order central difference III the 
I’ direction). The Arakawa form was found to work quite well. We extended the 
method of [ 171 to allow a no-slip boundary condition on the walls. In the present 
study, the partial differential operators in the .I- and J‘ directions are estimated by 
the pseudo-spectral method. On the other hand, the rotational form of the co~iec- 
tive terms can be written 

Both the Arakawa and rotational forms preserve mean momentum and energy ir, 
the discretized sense. 

It is numerically revealed that the major error in the Arakawa form occurs in rhe 
s-momentum equation: 

On the other hand, the major error in the rotational form comes from the terms 

in the :-momentum equation. 
Equations (28) and (29) are 

-su Ii-, 
-l/~+~~ll- 

approximated by 

and 
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respectively. Using Taylor expansions around zk, we get the error estimate for (31) 

(I? 
au 1 

ktl-hk) ,,7 . ( > 
The horizontal average of (33) can be written 

a(u) 2 (A,+,-11,) Yj- ( ) 
&” 2 

-7 , + (hk+l-/lk) l( )> z . (33) 

Because (U) is linear in Z+ near the walls, the first term in (33) becomes 
(11, + I - ilk) Re’. Further, (11, + , -hk) can be estimated as 

(11, f 1 -Ilk) - (A<)’ x(5), (34) 

where 

tanh(c,<) 
a cosh2(c,<)’ 

Hence, the first term in (33) is approximately (A;‘)’ x( 1) Re’. This is of order lo2 to 
lo3 in the current computation and introduces a large error into (20~) near the 
wall. 

The corresponding truncation error for (30) is estimated to be 

The limiting slope of the normal velocity at the wall is zero. Therefore, with a no- 
slip boundary condition at the wall, the error (35) is smaller than (33) by the order 
of lo3 to 10’. Thus, no serious error is introduced by using the Arakawa form (26). 

The governing equation for the balance of the GS portion of turbulent 
energy (12) can be derived by multiplying (5) by 12:’ and averaging horizontally. If 
the rotational form is used, the production term arises from the term ~7:’ ~?(ti,~l,)/$x,. 
In some formulations, the total GS energy U,U,/2 is added to the pressure and 
treated as the pressure head. In that case, if proper care is not taken in the 
approximation of the pressure-gradient terms, the production of turbulent energy 
may be incorrect. Splitting the velocity components to the mean streamwise velocity 
and the deviation part i.e. ~7, = (~2,) a,, + ti:‘, is recommended. Inserting this 
expression in the convective terms we get 

(36) 

If the last term in the right-hand side of (36) i’s treated by the rotational form, the 
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first term in the error estimate (33) is eliminated. It is considered that this splitting 
of velocity is related to the residual stress model, because in both the mean part is 
separated and explicitly used in the computation. 

3.3. Computed Cases 

The region to be treated has a streamwise length (L,) of 3.2 N or 3.8 H and a 
spanwise one (f,,.) of 1.6 H. The size of computational domain in the x and J direc- 
tions must minimize the effect of the imposed periodic boundary conditions. The 
two-point correlation measurements of [20] are used as a criterion. Re is chosen as 
1280 (R, = 27800). 

The initial condition was generated by interpolating the data obtained in the 
previous computation [4] with 32 x 32 x 32 grid points. Computations Lvere done 
until a statistically steady state was reached and continued to obtain reliabie 
statistical quantities. In all cases shown here, the time interval At is 0.0005. 

The Arakawa form is employed in Case 1. The nondimensional integration time 
of Case 1 is 9.85. The rotational form is used in Case 2. This computation \~as 
restarted from an intermediate stage of Case 1 (at t = 9.6 I, and the con\ective 1erms 
are switched from the Arakawa form to the rotational form and extended uctil 
I = 1 I. 1. Case 3 is restarted from f = 9.6 of Case 1: L, is increased to 4.8 to check 
the dependence on the size of computational box and extended until f = 12.6. 
Ensemble averages are obtained from the last 3.0 and 1.5 time units in Case 1 and 
m Cases 2 and 3. respectively. In Secttons 4 and 5. (. > indicates horizontal-time 
averaged values. 

A regular grid system was used. Results with a staggered grid system and the 
rotational form have been omitted, where the residual stress model ~vas !l.ot 
employed. They showed no significant differences from Case 2 of the present study. 

All computations were done with the HITAC S-810 Model 20 system of the 
Computer Center of the University of Tokyo. The main memory ivas 2 million 6~ 
bit words and we utilized 4.5 million words of extended storage (ES 1. which is com- 
posed of semiconductor memory. Use of ES instead of the magnetic disk. 
remarkably reduced I/O wait time. The computer time. including I:0 time, is 5.5 s 
per time step. The computed cases are summarized in Table I. 

TABLE 1 

Case Specifications, Grid Parameters. 
the Sue of Computational Domain, 

Forms of Approxlmatlon for the Convectwe Terms 
m the Navier-Stokes Equations 

Case NX NY IVZ L, L, ConvectlYe terms 

! 64 64 62 3.2 1.6 Xrakawa 
2 61 64 62 3.2 1.6 Rotauonal 
3 6-1 61 62 4.8 I 6 Arakawa 
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Features of the boundary layer flow in the near wall region were revealed by 
Kline er al. [21]. They found an array of high- and low-speed regions called 
“streaks.” The mean spacing of the streaks is approximately 100 wall units. 

4. RESULTS AND DISCUSSION OF CASE 1 

In this section, we show the results from Case 1 and compare with previous 
numerical simulations [I and 21. In [ 11, spectral methods were used in the x-direc- 
tion with NX= 64, in the I’-direction with NY= 128, and finite differences were 
used in the r-direction with NZ= 63. In the present study, NX= NY= 64 and 
NZ= 62. In [2], NX= NY= 128 with 65 Chebyshev polynomials expansion in the 
z-direction. 

Figure 1 shows the mean streamwise velocity profile. This profile is fit by 
(U) =z+ in the vicinity of the wall and in the logarithmic region approximately 

(U) = (l/0.4) log z + + 6.2. (37) 

The Karman constant obtained (0.4) is in good agreement with the value deter- 
mined experimentally in [22,33], but the constant B= 6.2 is larger than the 
generally accepted value of 5.0 in [23, 241, and that in Cl], and close to the value 
of 5.9 in [ZS]. However, the value is considerably improved from 7.0 in the com- 
putation with 32 x 32 x 32 grid points [4]. This constant seems to be controllable 
by the constant c* in the residual stress model (11). In the present study, we aban- 
doned the residual stress model and cannot control B. 

25.0 j 

20.0 
15.0 

1 

<ii> 

10.0 - /D 

P 

A 
5.0 - , 

/d 
0,’ 

0.0 -r I r 1 5 IO 50 100 500 1000 

z* 

FIG 1. Mean streamwlse velocity profile (U) from Case 1; ‘2, computation; ---, (U? =z+; 
--( (t7)=I,:Ollog~++h.Z. 
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Figure 2 plots the profiles of the GS mean Reynolds stress (ti”ri-) and the total 
stress 

($,t’) - (,I e (g+g);) -A?. 
\ 

The total stress balances the mean pressure gradient, indicated by a dashed line rn 
the figure. The computation appears to be in statistical equilibrtum. 

Figure 3 shows the profiles of the correlation function between the GS streamwise 
and normal components of the fluctuations, 

(jy,y,),/($1)’ r/(,2)’ 1, 

The profiles agree fairly well with the data of [26-j. 

0.25 

0.00 

-0.25 

-0.50 

0.0 0.2 0.4 0.6 0.8 i .O 

z 

FIG. 3 Correlation coefficient between the GS streamwise and normal components of fluctcarmns 
from Case 1 : !3 ); -, expertmental data m 1261. 
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FIG. 4. (a) GS turbulence intensities from Case 1 ((I:‘); ---, computatlonal data m [ 11; Pm1 
experimental data in 1271. (b) GS turbulence intensities in the wcimty of the lower wall from Case 1 
(0 j; ---, computatmnal data in [I J. 
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Figure 4a displays GS turbulence intensities in the s, J', z directions and Fig. 4b 
shows the intensities in the vicinity of the lower wall in wall units. For comparison, 
the computational data of [l] and the experimental measurement in [27] are 
shown. From these figures, we see that the amplitude of (ti”‘)“’ is larger than 
in [ 1,271 and ( El2 ) “’ is slightly larger than in [ 1,271. We find an appreciable dif- 
ference in (L’2)1Y2 between the present result and that of [l]: the position of the 
peak is closer to the wall and shows better agreement with [27]. The overall 
agreement with [27] is good. 

Figure 5 plots the streamwise two-point correlation function 

R,(r,;;)= (iq(x+l.,, y, z)zy(x, y, z))/(U:“(X, J’,Z)), (38) 

at two locations (z =0.0129 and 0.0626). The profiles of R,, (r,; z) at z = 0.055 
from [ZO] and R, , (r, ; ;) at z = 0.0125 and 0.0605 from [ 1 ] are included. The 
profiles are at slightly different vertical locations. As found in [ 11, for small values 
of r,, the measured correlations in [20] are smaller than the computed results. 
For larger values of rl, the computed results are smaller than experimental 
measurements in [20]. The present correlation persists over a longer distance in the 
downstream direction than in [1] and agrees with the experimental observation 
that mean streamwise length of streaks is greater than 1000 wall units [28]. To 

I= 0.0129 

0.8 

rI 

0.8 

rI 

FIG. 5. Streamwse two point correlation function R,,(r,; z); -, R,, from Case 1 of the present 
study; -mm-, R,-v. pm--, R,,; ... , experImenta data m [ZO], ---, computational data in [I]. 
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FIG 6. Spanwse two point correlatton function R,,(r2; ZJ. -. R,,; mm-1 R.9; m-m-, R,: -- 

2 

check the dependence of streamwise correlations on the size of the computalioaal 
box m the streamwise direction, L, was elongated to 4.8 III Case 3. The results 
showed a tendency similar to Case 1. 

The spanwise two-point correlation functions I?,,( Y, ; Z) defined by 

R,,(rl; I) = (iq(x, j’, I) Il:r(x, y+r2, rl)/(ti;‘2(.Y. j’, z)), 139) 

at the same locations as in Fig. 5 are plotted in Fig. 6. Using the position of the first 
negative peak of Rll(~?: z), we can estimate the mean streak spacing as 250. which 
is considerably larger than the generally accepted value of 100 [21]~ A similar 
defect is reported in [I]. The reason for this discrepancy may be, as pointed out 
in [ l], that the grid resolution is not sufficient for the Reynolds number considered. 
Nevertheless, our mean spacing of streaks is found to be very ciose to that of [I], 
in spite of the fact that the number of grid points employed in the spanwise direc- 
tion is half that in [ 11. 

Figures 7a, b. and c display the budget of the GS portion of three components of 
turbulent intensities. In the downstream direction, the production and dissipation 
terms are dominant in the central region, but the diffusion term is dominant near 
the wall. The diffusion term changes from positive to negative as we depart from the 
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-,,j 
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FIG. 7. (a) Balance of ensemble averaged GS portion of the streamwise component of turbulent 
kinetic energy from Case 1. C, production; 3, convectton; x , veloctty-pressure gradtent; 0, diffusion; 
Ii, drssipation; x , cascade. (b) Balance of GS portion of the spanwrse component of turbulent kmetrc 
energy. See caption of Fig. 7a for detatls. (c) Balance of GS portion of the normal component of tur- 
bulent kinetic energy. (d) Balance of GS portron of the normal component of turbulent kinetrc energy 
from previous numerical calculatrons [ 11. (e) Balance of GS portmn of the normal component of tur- 
bulent kinetic energy in the vicinity of concave wall from previous numerical calculations [Z]. Note that 
the posrtrons of markers do not coincide wrth the Chebyshev collocation points. 
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wall [4]. The balances in both the streamwise and spanwise components are 
qualitatively the same as in [l], but the peak values of the production and dis- 
sipation terms in the streamwise component are larger. However, the GS balance 
for (I?‘) is qualitatively different from that of [I 11. Partial results from [ 1 ] are 
reproduced in Fig. 7d. In both in [1] and the present study, the velocity-pressure 
gradient term balances the dissipation term in the central region. On the other 
hand, the velocity-pressure gradient term has a large gain. peaked at I+ -- 10 
in [I]. The convection term makes up for this peak. This peak is absent m the 
present study. Figure 7e shows the corresponding energy balance from a direct 
simulation of a mildly curved channel flow [2]. Although the contribution of the 
convection term in the present study is larger than in [Z], the qualitative agreemenr 
is good. The effect of curvature in [2] and the difference in the Reynolds number 
should be noted. For the former, in [2], computation was performed at a mild cur- 
vature. Therefore, the comparison with the present study will be plausible because 
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FIG. 8. (a) Balance of ensemble averaged GS portion of turbulent shear stress from Case I. See cap- 
tion of Fig. 7a for detak (b) Balance of GS portion of turbulent shear stress from previous numerlcal 
calculations [l], (c) Balance of GS portion of turbulent shear stress in the vicimty of concave wall in 
prebious numerical calculations [Z]. See captions of Figs. 7a and 7e for details. 
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FIG. 9 (a) Contour lines of 2’ in the .vu:r’ plane at Z+ = 6.4, t = 9.6 from Case 1. (b) Contour hnes of 

u -” in the -Y-J plane at z, = 614, f=9 fj from Case 1 (c) Contour lmes of p” in the 3-x p!Zne at 

3 + = 6.4. f = 9.6 from Case 1. 
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the curvature will not affect the results crucially until z, is sufficiently large [2]. 
The Reynolds number in [2] is 336 compared with 1280 in [I]. The large peak of 
the velocity-pressure gradient term in the vicinity of the wall in [ 11 may be due to 
the higher Reynolds number. 

A greater difference is seen in the balance of the GS portion of turbulent shear 
stress. Figures 8a, b, and c display the budget of the GS portion of turbulent shear 
stress in the present study, [ 11, and [2], respectively (only production, convection, 
and velocity-pressure gradient terms are reproduced in Figs. 8b and 8~). Large 
peaks in both the convection and the velocity-pressure gradient terms are found 
in [l], whereas these peaks are absent in the present study and [a]. Instead, the 
production term has a large peak at z+ - 25 in the present study and at z, - 15 
in [2]. (The difference in the position of peak suggests insufficiency of the number 
of grid points employed in the present study.) In the central region of the channel, 
the convection term balances the production term in [l], whereas the 
velocity-pressure gradient term balances the production term in both the present 
study and [2]. This discrepancy is important for modeling. No experimental 
arguments of the budget of turbulent shear stress are available, but the large peak 
in the production term near the wall is consistent with the experimental observation 
that the turbulent energy production is maximum at z+ - 15 (see [29]). 

Figure 9a plots the instantaneous contour lines of U” in the X-J, plane located at 
-7+ = 6.4 at t = 9.6. Positive values are contoured by solid lines and negative values 
by dashed lines. Highly elongated regions of high- and low-speed fluid U”, which 
correspond to the experimentally observed streaks, can be discerned. However, the 
mean spacing of streaks is approximately 250 wall units. The instantaneous contour 
lines of II” in the .X-J’ plane located at z+ = 614 and at t = 9.6 is displayed in Fig. 9b. 
The streaky structures observed in Fig. 9a are absent. This agrees with the 
experimental observations in [2 11. The instantaneous contour lines of p” in the X-J’ 

FIG. 10 Top view of streaky structure vlsuahzed by passive markers introduced along a horizontal 
wire set at z, = 12.8 from Case I. 
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plane located at ;+ = 6.4 and at t = 9.6 are displayed in Fig. 9c. With the 
Adams-Bashforth method for pressure gradient terms, the meshwise oscillations are 
suppressed as shown in the figure, and the root mean square value of the GS wail 
pressure fluctuations is about 2.0, which is in fair agreement with the experimcntai 
measurement of 2.3 in 1301 and the computational result 2.05 in [l]~ 

Time lines from Case 1 are displayed in Fig. 10, where a wire is set parallel IO the 
I.-axis at 3+ = 12.8. The streaks can be clearly identified in this figtire and 
agreement with experimental observations in [21] is good as in [II. 

5. RESULTS AND DISCUSSION OF CASE 2 

In Case 2, the convective terms are switched from the Arakawa form :o the 
rotational form. The mean streamwise velocity profile, the Reynolds stress dis- 
tribution, and GS turbulence intensity of the streamwise component are plotted in 
Figs. 11, 12 and 13, respectively. The GS Reynolds stress and turbulence intensities 
decays. Thus the mean streamwise velocity profile returns to rhe laminar profile. 
Therefore, unless a residual stress model is used with the rotational form. the tur- 
bulence dies out. It is found that when the Arakawa form is switched to :he 
rotational form, the large truncation error in the vicinity of the wall induces rhe 
spurious pressure. As a result, the velocity-pressure gradient term in the normal 
component of turbulent energy balance increases substantially. Thus, (:?‘) ’ ’ 
appreciably increases. Because the approximation preserves mean energy, a transfer 
of turbulent energy from the downstream component to the spanwise and normal 
components arises: ( U”’ ) ’ ” substantially decreases and ( C’ ) ’ ’ slightly increases. 

Figure 14 shows the balance of the turbulent shear stress. Comparison? w:th 
Fig. 8a reveals that the velocity-pressure gradient term changes sign from positive 

25.0 , 1 

FIG Il. Mean streamwise velocity profile <al from Case 2. See caption of Fig. I fcr details. 
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FIG. 12. h4ean GS Reynolds stress and the total stress from Case 2; Cs. (ZM.); ~1, the total stress. 

to negative. This change occurs immediately after we switch from the Arakawa form 
to the rotational form. The sum of all terms in the right-hand side of (13) is 
negative in the lower half of the channel. Thus the turbulent shear stress decreases 
in time. GS Reynolds stress and the correlation coefficient between the GS 
streamwise and normal components of fluctuations in the vicinity of the lower wall 
are plotted in Figs. 15 and 16, respectively. In Case 2, the GS Reynolds stress 
slightly increases in the amplitude at z+ 3 10, and changes sign from negative to 
positive at z+ - 2 as in Fig. 16. The strong negative correlation coefficient at 
5, z 10 in Case 1 is absent at t = 9.601 in Case 2. Thus. the GS shear stress decays. 
The large peak in the production term observed in Fig. 8a disappears and is totally 

FIG. 13. GS turbulence lntensitles of streamwIse component from Case 2 (0 ). 
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FIG 14. Balance of ensemble averapcd CS portton of turbulent shear stress from Case 3 See captloi? 
of Fig. 7a For detak 

absent from Fig. 14. The distributions of velocity-pressure gradient and production 
terms from Case 2 qualitatively agree with those in (1 I]. If we employ the residual 
stress model with the rotational form. the convection term will compensate for the 
velocity-pressure gradient term as in [ 11. 

Finally, we compare Cases 1 and 2 from the viewpoint of hehcity. The histograms 
of the probability density for the distribution of the angle 0 between the fluctuating 
velocity < = (~2”. G, 17)’ and vorticity w in the J-J’ plane at z + = 1.8, I = 9.6, are plc;- 
ted in Fig. !7a. Here. o denotes (CD,, II+. Q?)‘, where ~!),=a,,~~, SU;:,/i’x, and E, ,,!, 
denotes the alternating tensor. The range cos 0 = - 1 to 1 is divided into 30 equali! 

-LOOj , , , , 1 
C.0 25.0 50.0 75.0 100.0 

z+ 

FIG 15. hlean GS Reynolds stress in the vlcimty of the loww wall- ‘j. from Fg. 3: __ a! I == 9 661 
from Case 3 
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FIG. 16. Correlation coefficient between the GS streamwise and normal components of fluctuations: 
i?, from Fig. 3; A. at t = 9.601 from Case 2. 

spaced intervals. The total number of data is 4096. Other samples (or different 
times) gave the same mean result. A sharp peak appears near cos 0 = 0. Therefore, 
in the near wall region, the velocity vector is perpendicular to the vorticity vector. 
The weak helicity (5. Q) maximizes the absolute value of c x cr) and results in the 
strong production of vorticity. Consequently, the production of turbulent energy is 
large. The correlation between the weak helicity and the strong production has 
been pointed out in plane channel and Taylor-Green vortex flows [3 I]. The dis- 
tribution in Case 2 right after the Arakawa form is switched to the rotational form 
is plotted in Fig. 17b. Unlike in Case 1, the sharp peak in Fig. 17a is reduced. Thus, 
the production of turbulent energy is weakened. This is consistent with the absence 
of the peak in the production term of the GS portion of turbulent shear stress 
balance in Fig. 14. It is interesting to note that at t = 11.1 in Case 2, we switched 
back to the Arakawa form, and the turbulence began to revive. 

6. CONCLUSIONS 

Turbulent plane channel flow has been numerically studied using large eddy 
simulation, with the pseudo-spectral method in the downstream and spanwise 
directions and the second-order central finite differences in the normal direction. 
The numerical method is basically the same as in [ 11, but we have considered four 
choices in schemes for the convective terms and turbulence models. The convective 
term may be of either the Arakawa form (refered to as “CS” below) or the 
rotational form (RT) and the residual stress model may (RS) or may not (NORS) 
be employed. In [l], RT~-RS was employed, and in Case 1 of the present study, 
CS-NORS is used. The difference in the balance of the grid scale portion of the tur- 
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FIG. 17. (al Histograms of cos B vs the probability density in the .u-y plane at :+ = 1.8, i = 9.6 from 
Case 1. (b) Histograms of cos H vs the probability density m the .u-~ plane at :+ = 1 S. from Case 2. 
right after the Arakawa form IS switched to the rotatmnal form 

bulent shear stress between the two cases is considerable. Appreciable differences 
are also found in turbulence intensities and two-point correlations. The mean spae- 
ing of streaks is 250 wall units. which is close to that in [ I], although the number 
of grid points in the spanwise direction used here is half that in Cl]. The results m 
the present study are qualitatively consistent with drrect simulation 12-j. An 
analytical estimate for the Arakawa and rotational forms shows the error to be 
large for the rotational form near the wall. This explains the poor results obtained 
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with this method. These errors may be absent when higher order schemes or 
Chebyshev polynomial expansions are used. However, the truncation error 
associated with the second-order central finite differences can lead to inaccurate 
results. Finally, we note that the CS-RS combination may improve the value of 
constant B in the logarithmic part of the mean streamwise velocity profile. 
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